Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.338
Filtrar
1.
Oncogene ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664501

RESUMEN

Receptor-interacting protein kinase 4 (RIPK4) is increasingly recognized as a pivotal player in ovarian cancer, promoting tumorigenesis and disease progression. Despite its significance, the posttranslational modifications dictating RIPK4 stability in ovarian cancer remain largely uncharted. In this study, we first established that RIPK4 levels are markedly higher in metastatic than in primary ovarian cancer tissues through single-cell sequencing. Subsequently, we identified UCHL3 as a key deubiquitinase that regulates RIPK4. We elucidate the mechanism that UCHL3 interacts with and deubiquitinates RIPK4 at the K469 site, removing the K48-linked ubiquitin chain and thus enhancing RIPK4 stabilization. Intriguingly, inhibition of UCHL3 activity using TCID leads to increased RIPK4 ubiquitination and degradation. Furthermore, we discovered that GSK3ß-mediated phosphorylation of RIPK4 at Ser420 enhances its interaction with UCHL3, facilitating further deubiquitination and stabilization. Functionally, RIPK4 was found to drive the proliferation and metastasis of ovarian cancer in a UCHL3-dependent manner both in vitro and in vivo. Importantly, positive correlations between RIPK4 and UCHL3 protein expression levels were observed, with both serving as indicators of poor prognosis in ovarian cancer patients. Overall, this study uncovers a novel pathway wherein GSK3ß-induced phosphorylation of RIPK4 strengthens its interaction with UCHL3, leading to increased deubiquitination and stabilization of RIPK4, thereby promoting ovarian cancer metastasis. These findings offer new insights into the molecular underpinnings of ovarian cancer and highlight potential therapeutic targets for enhancing antitumor efficacy.

2.
Sci Total Environ ; 927: 172308, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599396

RESUMEN

Despite the diverse research into the environmental impact of plastics, several stones have yet to be unraveled in terms of their ecotoxicological potential. Moreover, their detrimental impacts have become terrifying in recent years as the understanding of their tendency to associate and form cohorts with other emerging contaminants grew. Despite the hypothesis that microplastics may potentially adsorb organic pollutants, sequestering and making them not bioavailable for enhanced toxicity, evidence with pollutants such as Tetrabromobisphenol A (TBBPA) defers this assertion. TBBPA, one of the most widely used brominated flame retardants, has been enlisted as an emerging contaminant of serious environmental and human health concerns. Being also an additive to plasticware, it is not far to suspect that TBBPA could be found in association with micro/nanoplastics in our environment. Several pieces of evidence from recent studies have confirmed the micro/nanoplastics-TBBPA association and have exposed their compounded detrimental impacts on the environment and human health. This study, therefore, presents a comprehensive and up-to-date review of recent findings regarding their occurrence, factors that foster their association, including their sorption kinetics and isotherms, and their impacts on aquatic/agroecosystem and human health. The way forward and prospects for future studies were presented. This research is believed to be of significant interest to the readership due to its relevance to current environmental challenges posed by plastics and TBBPA. The study not only contributes valuable insights into the specific interaction between micro/nanoplastics and TBBPA but also suggests the way forward and prospects for future studies in this field.


Asunto(s)
Ecotoxicología , Contaminantes Ambientales , Microplásticos , Bifenilos Polibrominados , Humanos , Monitoreo del Ambiente , Retardadores de Llama
3.
Sci Rep ; 14(1): 9470, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658657

RESUMEN

Measles remains a significant threat to children worldwide despite the availability of effective vaccines. The COVID-19 pandemic exacerbated the situation by leading to the postponement of supplementary measles immunization activities. Along with this postponement, measles surveillance also deteriorated, with the lowest number of submitted specimens in over a decade. In this study, we focus on measles as a challenging case study due to its high vaccination coverage, which leads to smaller outbreaks and potentially weaker signals on Google Trends. Our research aimed to explore the feasibility of using Google Trends for real-time monitoring of infectious disease outbreaks. We evaluated the correlation between Google Trends searches and clinical case data using the Pearson correlation coefficient and Spearman's rank correlation coefficient across 30 European countries and Japan. The results revealed that Google Trends was most suitable for monitoring acute disease outbreaks at the regional level in high-income countries, even when there are only a few weekly cases. For example, from 2017 to 2019, the Pearson correlation coefficient was 0.86 (p-value< 0.05) at the prefecture level for Okinawa, Japan, versus 0.33 (p-value< 0.05) at the national level for Japan. Furthermore, we found that the Pearson correlation coefficient may be more suitable than Spearman's rank correlation coefficient for evaluating the correlations between Google Trends search data and clinical case data. This study highlighted the potential of utilizing Google Trends as a valuable tool for timely public health interventions to respond to infectious disease outbreaks, even in the context of diseases with high vaccine coverage.


Asunto(s)
Brotes de Enfermedades , Sarampión , Humanos , Sarampión/epidemiología , Sarampión/prevención & control , Brotes de Enfermedades/prevención & control , Japón/epidemiología , Motor de Búsqueda , COVID-19/epidemiología , COVID-19/prevención & control , Europa (Continente)/epidemiología , Internet , SARS-CoV-2/aislamiento & purificación
4.
J Biomed Sci ; 31(1): 42, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650023

RESUMEN

BACKGROUND: Myocarditis substantially increases the risk of ventricular arrhythmia. Approximately 30% of all ventricular arrhythmia cases in patients with myocarditis originate from the right ventricular outflow tract (RVOT). However, the role of NLRP3 signaling in RVOT arrhythmogenesis remains unclear. METHODS: Rats with myosin peptide-induced myocarditis (experimental group) were treated with an NLRP3 inhibitor (MCC950; 10 mg/kg, daily for 14 days) or left untreated. Then, they were subjected to electrocardiography and echocardiography. Ventricular tissue samples were collected from each rat's RVOT, right ventricular apex (RVA), and left ventricle (LV) and examined through conventional microelectrode and histopathologic analyses. In addition, whole-cell patch-clamp recording, confocal fluorescence microscopy, and Western blotting were performed to evaluate ionic currents, intracellular Ca2+ transients, and Ca2+-modulated protein expression in individual myocytes isolated from the RVOTs. RESULTS: The LV ejection fraction was lower and premature ventricular contraction frequency was higher in the experimental group than in the control group (rats not exposed to myosin peptide). Myocarditis increased the infiltration of inflammatory cells into cardiac tissue and upregulated the expression of NLRP3; these observations were more prominent in the RVOT and RVA than in the LV. Furthermore, experimental rats treated with MCC950 (treatment group) improved their LV ejection fraction and reduced the frequency of premature ventricular contraction. Histopathological analysis revealed higher incidence of abnormal automaticity and pacing-induced ventricular tachycardia in the RVOTs of the experimental group than in those of the control and treatment groups. However, the incidences of these conditions in the RVA and LV were similar across the groups. The RVOT myocytes of the experimental group exhibited lower Ca2+ levels in the sarcoplasmic reticulum, smaller intracellular Ca2+ transients, lower L-type Ca2+ currents, larger late Na+ currents, larger Na+-Ca2+ exchanger currents, higher reactive oxygen species levels, and higher Ca2+/calmodulin-dependent protein kinase II levels than did those of the control and treatment groups. CONCLUSION: Myocarditis may increase the rate of RVOT arrhythmogenesis, possibly through electrical and structural remodeling. These changes may be mitigated by inhibiting NLRP3 signaling.

5.
Front Pediatr ; 12: 1349670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650991

RESUMEN

Background: Numerous studies have examined the association between obesity and age at menarche (AAM), with most focusing on traditional obesity indicators such as body mass index. However, there are limited studies that explored the connection between body fat distribution and AAM, as well as a scarcity of Mendelian randomization (MR) studies. Methods: In this study, we conducted a two-sample MR study to evaluate the causal effects of eight body fat distribution indicators on AAM. Inverse variance weighted (IVW) method was used for primary analysis, while supplementary approaches such as MR-Egger and weighted median were also utilized. Considering that the eight exposures were highly correlated, we performed an MR Bayesian model averaging (MR-BMA) analysis to prioritize the effect of major exposure on AAM. A series of sensitivity analyses were also performed. Results: From a range of 82-105 single nucleotide polymorphisms (SNPs) were utilized as genetic instrumental variables for each of the exposure factors. After Bonferroni correction, we found that whole body fat mass (ß: -0.17; 95% CI: -0.24, -0.11), left leg fat percentage (ß: -0.14; 95% CI: -0.21, -0.07), left leg fat mass (ß: -0.20; 95% CI: -0.27, -0.12), left arm fat percentage (ß: -0.18; 95% CI: -0.26, -0.11) and left arm fat mass (ß: -0.18; 95%CI: -0.26, -0.10) were associated with decreased AAM using random effects IVW method. And the beta coefficients for all MR evaluation methods exhibited consistent trends. MR-BMA method validated that left arm fat percentage plays a dominant role in AAM. Conclusions: Our MR study suggested that body fat has broad impacts on AAM. Obtaining more information on body measurements would greatly enhance our comprehension of pubertal development.

6.
Diagnostics (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38667430

RESUMEN

Low-dose computed tomography screening for lung cancer is currently targeted at heavy smokers or those with a family history of lung cancer. This study aimed to identify risk factors for lung cancer in individuals who do not meet the current lung cancer screening criteria as stipulated by the Taiwan Health Promotion Agency's low-dose computed tomography (LDCT) screening policy. A cohort analysis was conducted on 12,542 asymptomatic healthy subjects aged 20-80 years old who voluntarily underwent LDCT scans from January 2016 to December 2021. Logistic regression demonstrated that several factors, including age over 55 years, female gender, a body mass index (BMI) less than 23, a previous history of respiratory diseases such as tuberculosis or obstructive respiratory diseases (chronic obstructive pulmonary disease [COPD], asthma), and previous respiratory symptoms such as cough or dyspnea, were associated with high-risk lung radiology scores according to LDCT scans. These findings indicate that risk-based assessments using primary data and questionnaires to identify risk factors other than heavy smoking and a family history of lung cancer may improve the efficiency of lung cancer screening.

7.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38668585

RESUMEN

Rogue waves are important physical phenomena, which have wide applications in nonlinear optics, hydrodynamics, Bose-Einstein condensates, and oceanic and atmospheric dynamics. We find that when using the original PINNs to study rogue waves of high dimensional PDEs, the prediction performance will become very poor, especially for high-order rogue waves due to that the randomness of selection of sample points makes insufficient use of the physical information describing the local sharp regions of rogue waves. In this paper, we propose an adaptive sampling physics-informed neural network method (ASPINN), which renders the points in local sharp regions to be selected sufficiently by a new adaptive search algorithm to lead to a prefect prediction performance. To valid the performance of our method, the (2+1)-dimensional CHKP equation is taken as an illustrative example. Experimental results reveal that the original PINNs can hardly be able to predict dynamical behaviors of the high-order rogue waves for the CHKP equation, but the ASPINN method can not only predict dynamical behaviors of these high-order rogue waves, but also greatly improve the prediction efficiency and accuracy to four orders of magnitude. Then, the data-driven inverse problem for the CHKP equation with different levels of corrupted noise is studied to show that the ASPINN method has good robustness. Moreover, some main factors affecting the neural network performance are discussed in detail, including the size of training data, the number of layers of the neural network, and the number of neurons per layer.

8.
Toxicology ; 504: 153800, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38604440

RESUMEN

Acrylamide (ACR) is an endogenous food contaminant, high levels of ACR have been detected in a large number of foods, causing widespread concern. Since different organism states respond differently to the toxic effects of pollutants, this study establishes an insulin-resistant BRL cell model to explore the differential susceptibility of BRL cells with/without insulin resistance in response to acrylamide-exposure (0.0002, 0.02, or 1 mM) toxicity effects and its mechanism. The results showed that ACR exposure decreased glucose uptake and increased intracellular lipid levels by promoting the expression of fatty acid synthesis, transport, and gluconeogenesis genes and inhibiting the expression of fatty acid metabolism genes, thereby further exacerbating disorders of gluconeogenesis and lipid metabolism in insulin-resistant BRL cells. Simultaneously, its exposure also exacerbated BRL cells with/without insulin-resistant damage. Meanwhile, insulin resistance significantly raised susceptibility to BRL cell response to ACR-induced toxicity. Furthermore, ACR exposure further activated the endoplasmic reticulum stress (ERS) signaling pathway (promoting phosphorylation of PERK, eIF-2α, and IRE-1α) and the apoptosis signaling pathway (activating Caspase-3 and increasing the Bax/Bcl-2 ratio) in BRL cells with insulin-resistant, which were also attenuated after ROS scavenging or ERS signaling pathway blockade. Overall results suggested that ACR evokes a severer toxicity effect on BRL cells with insulin resistance through the overactivation of the ERS signaling pathway.

9.
Asian J Surg ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641528

RESUMEN

Polycystic ovary syndrome (PCOS) is a multifactorial disease, which is closely related to obesity. This study evaluated the efficacy of bariatric surgery on obesity complicated with PCOS through meta-analysis. PubMed, Cochrane, EMbase, and WOS databases were searched from 2012 to November 2022. Studies on the efficacy of bariatric surgery in the treatment of obesity combined with PCOS were included. Outcome indicators included menstrual abnormalities, BMI, free testosterone, hypertrichosis, and ovarian volume. Methodological quality of the included studies was evaluated, and statistical analysis was performed using RevMan 5.3 software. Finally, 9 studies were included, and the results of meta-analysis were as follows: After weight loss surgery, menstrual irregularity decreased (RR = -0.83, 95%CI:-1.00∼-0.65, P < 0.00001), and BMI decreased significantly (MD = -13.64, 95%CI:-16.29∼-10.99, P < 0.00001). Free testosterone levels decreased (MD = -22.70, 95 % CI: -36.07 âˆ¼ -9.34, P < 0.00001), the incidence of hypertrichosis decreased (RR = 0.63, 95%CI: 0.45-0.88, p = 0.007 < 0.01), and the ovarian volume decreased (MD = -3.09, 5%CI: -5.76 âˆ¼ -0.42, P < 0.00001).

10.
Adv Mater ; : e2314142, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38624068

RESUMEN

Crystal-phase engineering that promotes the rearrangement of active atoms to form new structural frameworks achieves excellent result in the field of electrocatalysis and optimizes the performance of various electrochemical reactions. Herein, for the first time, it is found that the different components in metallic aerogels will affect the crystal-phase transformation, especially in high-entropy alloy aerogels (HEAAs), whose crystal-phase transformation during annealing is more difficult than medium-entropy alloy aerogels (MEAAs), but they still show better electrochemical performance. Specifically, PdPtCuCoNi HEAAs with the parent phase of face-centered cubic (FCC) PdCu possess excellent 89.24% of selectivity, 746.82 mmol h-1 g-1 cat. of yield rate, and 90.75% of Faraday efficiency for ethylamine during acetonitrile reduction reaction (ARR); while, maintaining stability under 50 h of long-term testing and ten consecutive electrolysis cycles. The structure-activity relationship indicates that crystal-phase regulation from amorphous state to FCC phase promotes the atomic rearrangement in HEAAs, thereby optimizing the electronic structure and enhancing the adsorption strength of reaction intermediates, improving the catalytic performance. This study provides a new paradigm for developing novel ARR electrocatalysts and also expands the potential of crystal-phase engineering in other application areas.

11.
J Med Chem ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630440

RESUMEN

An efficient protocol for the synthesis of ß-trifluoroethoxydimethyl selenides was achieved under mild reaction conditions, and 39 compounds were prepared. All compounds were evaluated for their abilities to inhibit RANKL-induced osteoclastogenesis, compound 4aa exhibited the most potent activity. Further investigations revealed that 4aa could inhibit F-actin ring generation, bone resorption, and osteoclast-specific gene expression in vitro. Western blot analyses demonstrated that compound 4aa abrogated the RANKL-induced mitogen-activated protein kinase and NF-kB-signaling pathways. In addition, 4aa also displayed a notable impact on the osteoblastogenesis of MC3T3-E1 preosteoblasts. In vivo experiments revealed that compound 4aa significantly ameliorated bone loss in an ovariectomized (OVX) mice model. Furthermore, the surface plasmon resonance experiment results revealed that 4aa probably bound to RANKL. Collectively, the above-mentioned findings suggested that compound 4aa as a potential RANKL inhibitor averted OVX-triggered osteoporosis by regulating the inhibition of osteoclast differentiation and stimulation of osteoblast differentiation.

12.
J Med Virol ; 96(4): e29611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38639305

RESUMEN

While micronutrients are crucial for immune function, their impact on humoral responses to inactivated COVID-19 vaccination remains unclear. We investigated the associations between seven key micronutrients and antibody responses in 44 healthy adults with two doses of an inactivated COVID-19 vaccine. Blood samples were collected pre-vaccination and 28 days post-booster. We measured circulating minerals (iron, zinc, copper, and selenium) and vitamins (A, D, and E) concentrations alongside antibody responses and assessed their associations using linear regression analyses. Our analysis revealed inverse associations between blood iron and zinc concentrations and anti-SARS-CoV-2 IgM antibody binding affinity (AUC for iron: ß = -258.21, p < 0.0001; zinc: ß = -17.25, p = 0.0004). Notably, antibody quality presented complex relationships. Blood selenium was positively associated (ß = 18.61, p = 0.0030), while copper/selenium ratio was inversely associated (ß = -1.36, p = 0.0055) with the neutralizing ability against SARS-CoV-2 virus at a 1:10 plasma dilution. There was no significant association between circulating micronutrient concentrations and anti-SARS-CoV-2 IgG binding affinity. These findings suggest that circulating iron, zinc, and selenium concentrations and copper/selenium ratio, may serve as potential biomarkers for both quantity (binding affinity) and quality (neutralization) of humoral responses after inactivated COVID-19 vaccination. Furthermore, they hint at the potential of pre-vaccination dietary interventions, such as selenium supplementation, to improve vaccine efficacy. However, larger, diverse studies are needed to validate these findings. This research advances the understanding of the impact of micronutrients on vaccine response, offering the potential for personalized vaccination strategies.


Asunto(s)
COVID-19 , Selenio , Oligoelementos , Adulto , Humanos , Micronutrientes , Vacunas contra la COVID-19 , Cobre , COVID-19/prevención & control , SARS-CoV-2 , Zinc , Hierro , Vacunación , Anticuerpos Antivirales , Anticuerpos Neutralizantes
13.
Biomaterials ; 308: 122538, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38564889

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) nanotags have garnered much attention as promising bioimaging contrast agent with ultrahigh sensitivity, but their clinical translation faces challenges including biological and laser safety. As breast sentinel lymph node (SLN) imaging agents, SERS nanotags used by local injection and only accumulation in SLNs, which were removed during surgery, greatly reduce biological safety concerns. But their clinical translation lacks pilot demonstration on large animals close to humans. The laser safety requires irradiance below the maximum permissible exposure threshold, which is currently not achievable in most SERS applications. Here we report the invention of the core-shell SERS nanotags with ultrahigh brightness (1 pM limit of detection) at the second near-infrared (NIR-II) window for SLN identification on pre-clinical animal models including rabbits and non-human primate. We for the first time realize the intraoperative SERS-guided SLN navigation under a clinically safe laser (1.73 J/cm2) and identify multiple axillary SLNs on a non-human primate. No evidence of biosafety issues was observed in systematic examinations of these nanotags. Our study unveils the potential of NIR-II SERS nanotags as appropriate SLN tracers, making significant advances toward the accurate positioning of lesions using the SERS-based tracer technique.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38565964

RESUMEN

Graft failure is a fatal complication following allogeneic stem cell transplantation where a second transplantation is usually required for salvage. However, there are no recommended regimens for second transplantations for graft failure, especially in the haploidentical transplant setting. We recently reported encouraging outcomes using a novel method (haploidentical transplantation from a different donor after conditioning with fludarabine and cyclophosphamide). Herein, we report updated outcomes in 30 patients using this method. The median time of the second transplantation was 96.5 (33-215) days after the first transplantation. Except for one patient who died at +19d and before engraftment, neutrophil engraftments were achieved in all patients at 11 (8-24) days, while platelet engraftments were achieved in 22 (75.8%) patients at 17.5 (9-140) days. The 1-year OS and DFS were 60% and 53.3%, and CIR and TRM was 6.7% and 33.3%, respectively. Compared with the historical group, neutrophil engraftment (100% versus 58.5%, p < 0.001) and platelet engraftment (75.8% versus 32.3%, p < 0.001) were better in the novel regimen group, and OS was also improved (60.0% versus 26.4%, p = 0.011). In conclusion, salvage haploidentical transplantation from a different donor using the novel regimen represents a promising option to rescue patients with graft failure after the first haploidentical transplantation.

15.
BMC Pediatr ; 24(1): 222, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561702

RESUMEN

BACKGROUND AND OBJECTIVES: To investigate the relationship between body mass index (BMI) and blood biochemical indicators in early adolescence, and to provide ideas for early prevention of diseases and explore possible disease-related predictors. METHODS: 3125 participants aged 10 ∼ 14 years were selected from China from the survey of "China Nutrition and Health Surveillance ( 2016 ∼ 2017 ) ". Employing advanced statistical methods, including generalized linear models, heatmaps, hierarchical clustering, and generalized additive models, the study delved into the associations between BMI and various biochemical indicators. RESULTS: In early adolescence, indicators including systolic pressure, diastolic pressure, weight, height, BMI, hemoglobin, blood uric acid, serum creatinine, albumin, vitamin A presented increasing trends with the increase of age ( P < 0.05 ), whereas LDL-C, vitamin D, and ferritin showed decreasing trends with the increase of age ( P < 0.05 ). The increase in hemoglobin and blood uric acid levels with age was more pronounced in males compared to females ( P < 0.05 ). BMI was positively correlated with blood glucose, hemoglobin, triglyceride, LDL-C, blood uric acid, serum creatinine, ferritin, transferrin receptor, hs-CRP, total protein, vitamin A ( P < 0.05 ). There was a significant BMI × age interaction in the correlation analysis with LDL-C, transferrin receptor, serum creatinine, and hs-CRP ( P < 0.05 ). BMI was a risk factor for hypertension, hypertriglyceridemia, low high density lipoprotein cholesterolemia, and metabolic syndrome in all age groups ( OR > 1, P < 0.05 ). CONCLUSIONS: High BMI was a risk factor for hypertension, hypertriglyceridemia, low high density lipoprotein cholesterolemia, and MetS in early adolescents. With the focus on energy intake beginning in early adolescence, the maintenance of a healthy weight warrants greater attention.


Asunto(s)
Hipertensión , Hipertrigliceridemia , Masculino , Femenino , Humanos , Adolescente , Índice de Masa Corporal , Proteína C-Reactiva/análisis , LDL-Colesterol , Ácido Úrico , Creatinina , Vitamina A , Hipertensión/epidemiología , Lipoproteínas HDL , Hemoglobinas/análisis , Ferritinas , Receptores de Transferrina
16.
Nat Commun ; 15(1): 2894, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570494

RESUMEN

Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.


Asunto(s)
Solanaceae , Solanum lycopersicum , Solanum lycopersicum/genética , Domesticación , Fitomejoramiento , Esteroides
17.
Pediatr Res ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649724

RESUMEN

BACKGROUND: Obesity is an important cause for the precocious or early puberty. However, the association between obesity-related loci and the risk of precocious puberty as well as the effect of gene-environment interaction are unclear, especially in the Chinese children population. METHODS: This was a case-control study using baseline data from two cohorts and hospital cases in China. 15 SNPs loci and several environmental factors were included in the analysis of 1201 participants. Chi-square test and logistic regression were used to analyze the association between SNPs and precocious puberty. Additionally, exploratory factor analysis was conducted on 13 environmental variables, and then to explore their interaction with genes on precocious puberty. RESULTS: The effect allele C of rs571312, and G of rs12970134 MC4R were associated with precocious puberty in girls with obesity. Regarding the gene-environment interaction, we found that when girls were in the high socioeconomic status, the rs571312 (OR: 3.996; 95% CI: 1.694-9.423) and rs12970134 (OR: 3.529; 95% CI: 1.452-8.573) risk genotypes had a greater effect on precocious puberty. CONCLUSIONS: The obesity risk gene polymorphisms MC4R rs571312 and rs12970134 were associated with precocious puberty in Chinese girls with obesity, and girls with risk genotypes and high socioeconomic status should be given extra attention. IMPACT: This is the first study that identified the association between rs571312 and rs12970134 of MC4R gene and precocious puberty in Chinese children. We found that when girls were in the high socioeconomic status, the risk genotypes of rs571312 and rs12970134 had a greater effect on precocious puberty. The results of this study have great public health implications. It is recommended that girls who are in high socioeconomic status and have a high genetic risk for early sexual maturity should closely monitor their pubertal development and consider early intervention strategies.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38632023

RESUMEN

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has contributed to the spread of antimicrobial resistance, including carbapenem-resistant Enterobacterales. METHODS: This study utilized data from the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program in Taiwan. Enterobacterales from patients with bloodstream infections (BSIs) were collected and subjected to antimicrobial susceptibility testing and ß-lactamase gene detection using a multiplex PCR assay. Statistical analysis was conducted to compare susceptibility rates and resistance genes between time periods before (2018-2019) and during the COVID-19 pandemic (2020-2021). RESULTS: A total of 1231 Enterobacterales isolates were collected, predominantly Escherichia coli (55.6%) and Klebsiella pneumoniae (29.2%). The proportion of nosocomial BSIs increased during the COVID-19 pandemic (55.5% vs. 61.7%, p < 0.05). Overall, susceptibility rates for most antimicrobial agents decreased, with Enterobacterales from nosocomial BSIs showing significantly lower susceptibility rates than those from community-acquired BSIs. Among 123 Enterobacterales isolates that underwent molecular resistance mechanism detection, ESBL, AmpC ß-lactamase, and carbapenemase genes were detected in 43.1%, 48.8% and 16.3% of the tested isolates, respectively. The prevalence of carbapenemase genes among carbapenem-resistant Enterobacterales increased during the pandemic, although the difference was not statistically significant. Two novel ß-lactamase inhibitor combinations, imipenem-relebactam and meropenem-vaborbactam, preserved good efficacy against Enterobacterales. However, imipenem-relebactam showed lower in vitro activity against imipenem-non-susceptible Enterobacterales than that of meropenem-vaborbactam. CONCLUSIONS: The COVID-19 pandemic appears to be associated with a general decrease in antimicrobial susceptibility rates among Enterobacterales causing BSIs in Taiwan. Continuous surveillance is crucial to monitor antimicrobial resistance during the pandemic and in the future.

19.
Phys Rev E ; 109(3-2): 035002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632728

RESUMEN

In recent years, kirigami techniques have inspired the design of graphene-based nanodevices with exceptional stretchability and ductility. Based on an I-shaped cutting pattern, here we propose a graphene kirigami that exhibits remarkable stretchability and ductility in two independent planar directions along with negative Poisson's ratios. The deformation mechanism underlying the high stretchability of the structure is the flipping and rotation of its cutting ligaments during elongation. Molecular dynamics simulations show that the yield and fracture strains of graphene kirigami can be enhanced by factors of 6 and 10 in the two planar directions. In addition, the mechanical properties of the graphene kirigami can be tuned by altering the cutting geometric parameters as well as incorporating distinct cutting patterns in series. We develop a numerical algorithm to predict the stress-strain response of the series-connected graphene kirigami, and verify its accuracy using appropriate simulations. On this basis, the stress-strain response of the series-connected graphene kirigami can be tuned by altering its geometric parameters and the number of building blocks. This graphene kirigami could be applied to the design and development of next-generation flexible electronics such as stretchable electrodes and strain sensors.

20.
Front Endocrinol (Lausanne) ; 15: 1363078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633758

RESUMEN

[This corrects the article DOI: 10.3389/fendo.2023.1196293.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...